当前位置:首页 > 今日嘉腾 > 正文
联系我们
公司简介企业文化人才中心今日嘉腾

视频图像处理技术的四大技术

作者:嘉腾视讯来源:嘉腾视讯浏览:Loading...时间:2017-08-02字体:[ ]

        视频图像处理过程中会涉及到对视频图像数据的采集、传输、处理、显示和回放等过程,这些过程共同形成了一个系统的整体周期,可以连续性的运作。

    目前,市场上主流的视频图像处理技术包括:智能分析处理,视频透雾增透技术,宽动态处理,超分辨率处理,下面分别介绍以上四种处理技术。


 

智能分析处理技术

        智能视频分析技术是解决视频监控领域大数据筛选、检索技术问题的重要手段。通过前景提取等方法对画面中的物体的移动进行检测,通过设定规则来区分不同的行为,如拌线、物品遗留、周界,从而达到对视频中的特定物体进行检测及相关应用,如车辆检测、人流统计、人脸检测等应用。


 

视频透雾增透技术

        一般指将因雾和水气灰尘等导致朦胧不清的图像变得清晰,强调图像当中某些感兴趣的特征,抑制不感兴趣的特征,使得图像的质量改善,信息量更加丰富。由于雾霾天气以及雨雪、强光、暗光等恶劣条件导致视频监控图像的图像对比度差、分辨率低、图像模糊、特征无法辨识等问题,增透处理后的图像可为图像的下一步应用提供良好的条件。


 

数字图像宽动态的算法

        数字的信号处理会受到曝光量中曝光效果、光照度和强度的影响和作用。动态范围跟图案的深度息息相关,如果图像动态范围宽,则在图像处理时亮度变化较为明显,但如果动态范围较窄,在亮度转化时,亮暗程度的变化并不明显。目前图像的宽动态范围在视频监控、医疗影像等领域应用较为广泛。


 

超分辨率重建技术

  提高图像分辨率最直接的办法就是提高采集设备的传感器密度。然而高密度的图像传感器的价格相对昂贵,在一般应用中难以承受;另一方面,由于成像系统受其传感器阵列密度的限制,目前已接近极限。

  解决这一问题的有效途径是采用基于信号处理的软件方法对图像的空间分辨率进行提高,即超分辨率图像重建,其核心思想是用时间带宽(获取同一场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换,使得重建图像的视觉效果超过任何一帧低分辨率图像。